On Kneser Extensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalised Kneser Colourings

There are two possible definitions of the “s-disjoint r-uniform Kneser hypergraph” of a set system T : The hyperedges are either r-sets or r-multisets. We point out that Ziegler’s (combinatorial) lower bound on the chromatic number of an s-disjoint r-uniform Kneser hypergraph only holds if we consider r-multisets as hyperedges. We give a new proof of his result and show by example that a simila...

متن کامل

On generalized Kneser hypergraph colorings

In Ziegler (2002), the second author presented a lower bound for the chromatic numbers of hypergraphs KG sS, “generalized r-uniform Kneser hypergraphs with intersection multiplicities s.” It generalized previous lower bounds by Kř́ıž (1992/2000) for the case s = (1, . . . , 1) without intersection multiplicities, and by Sarkaria (1990) for S = ([n] k ) . Here we discuss subtleties and difficulti...

متن کامل

Variations on the Tait-Kneser theorem

At every point, a smooth plane curve can be approximated, to second order, by a circle; this circle is called osculating. One may think of the osculating circle as passing through three infinitesimally close points of the curve. A vertex of the curve is a point at which the osculating circle hyper-osculates: it approximates the curve to third order. Equivalently, a vertex is a critical point of...

متن کامل

On b-coloring of the Kneser graphs

A b-coloring of a graph G by k colors is a proper k-coloring of G such that in each color class there exists a vertex having neighbors in all the other k− 1 color classes. The b-chromatic number of a graph G, denoted by φ(G), is the maximum k for which G has a b-coloring by k colors. It is obvious that χ(G) ≤ φ(G). A graph G is b-continuous if for every k between χ(G) and φ(G) there is a b-colo...

متن کامل

On Fall Colorings of Kneser Graphs

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. In this note, we characterize all fall colorings of Kneser graphs of type KG(n, 2) for n ≥ 2 and study some fall colorings of KG(n,m) in some special cases and introduce some bounds for fall colorings of Kneser graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1998

ISSN: 0021-8693

DOI: 10.1006/jabr.1997.7308